
Note on the Necessity of Correlation in PCP Queries

Ann He

2020

Introduction

This paper is concerned with the following question: are there non-trivial PCPs [Aro+98] where
all verifier queries are independent?

In this paper, we formally prove the intuition that correlated queries are essentially for the sound-
ness of PCPs. More specifically, we are concerned with PCPs for NP. NP as a class captures the
notion of proof verification as polynomial-time efficient. It is usually implied that the verifier can
read the entire witness. However, when the verification is restricted to reading only a constant
number of locations on a proof, it is intuitive that these locations must be “carefully selected,” with
knowledge of the proof’s encoding. For instance, in the Hadamard PCP [Fal11], the verifier queries
three random positions with the third position being the XOR of the first two.

The rest of the manuscript shows that allowing for constant query PCPs, where queries are made
uniformly at random and independently, for NP on constant or polynomial-size alphabets, collapses
NP to RP, indicating that such PCPs are highly unlikely. We then extend the proof to the case of
indpendent queries, answering the original question. 1

Constant-Size Alphabet and Uniformly Random Queries

If the PCP verifier makes uniformly random queries, the set of possible PCP proofs can be com-
pressed to a set of histograms encoding of the number of times each alphabet symbol appears in a
proof. Therefore any PCP with sub-linear-size alphabets cannot support uniformly random queries
unless the exponential-time hypothesis is false.

The subexponential time algorithm queries a histogram encoding the relative frequency of sym-
bols in all possible PCP proofs to compute maxπ[Aπ,x] where Aπ,x is the probability that the
verfier would be convinced that x ∈ L when it makes random queries to π. (That is, the the RP
algorithm iterates over all possible histograms, querying as the PCP verifier does on each histogram,
and accepting iff at least one run of the PCP verifier accepts.)

1Of course, if one degenerately allows the query complexity to grow arbitrarily, then uniformly querying the PCP
proof recovers the original proof, so we restrict our examination to constant query PCPs. Similarly, if one allows for
exponentially-sized alphabets, then we can view each alphabet symbol as an encoding of a unique PCP proof, and a
uniform-query PCP results from querying at the only index available.

1

Polynomial-Size Alphabet and Uniformly Random Queries

In the constant alphabet case, each original proof can be mapped to a histogram with no loss of
information relative to the PCP verifier which makes uniformly random and independent queries.
An RP algorithm then decides the NP language by trying all possible proofs for an instance x.
In the polynomial-size alphabet case, a similar approach to achieving an RP algorithm requires
us to cover an exponentially sized set of proof strings by a polynomially sized set of proof string
“summaries.” We propose to perform the “covering” as follows–instead of checking all possible
histograms of symbol frequency, we compute a random but constant-length summary of length
100k2 of the PCP proof for each x. This process is formalized by a modified PCP using these short,
random proof summaries. The soundness of the PCP comes from the following averaging argument
[Bar06]–if the verifier accepts with good probability on a random histogram, then there exists a
fixed histogram for which the verifier accepts with good probability. Below, we formally give the
theorem and its proof.

Definition 0.1 (PCP for NP). Let 〈P, V 〉 be a PCP for NP using a polynomial-size alphabet,
making only a constant number k of uniformly random queries and has perfect completeness and
soundness s where 0 < s < 1 is a constant. That is for any x 6∈ L, and for all possible proof strings
π, the probability that V accepts on π and x (where the probability is over V’s coins) is less than s.

Theorem 0.2 (Main Theorem). Let PCP = 〈P, V 〉 be any PCP system for an NP-complete lan-
guage. Unless RP = NP, the queries V make cannot be independent and uniformly at random.

Algorithm 1 PCP for NP with Sampling

1: inputs: 〈P, V 〉, x
2: run P (x) to obtain π
3: sample 100k2 locations independently and uniformly at random from π to create string b
4: run V on x
5: answer V ’s queries using b
6: output whatever bit V outputs

Proof. Let 〈P ∗, V ∗〉 denote the PCP with sampling to distinguish it from a vanilla PCP. The
completeness of 〈P ∗, V ∗〉 is self-evident–by the perfect completeness of the PCP protocol, for x ∈ L
any k-tuple sample of symbols which appears in the original proof will lead to the verifier accepting.
To argue the soundness of 〈P ∗, V ∗〉, we argue that for x ∈ L, any proof summary which leads to
verifier acceptance is not far in statistical distance from a proper PCP proof which leads to verifier
acceptance. The intuition is that the if there are no collisions in the the sampling process from
the intermediate string to the final k-tuple that the verifier sees, then the new sampling strategy
essentially replicates sampling uniformly at random from the original proof string.

Bounding the soundess of 〈P ∗, V ∗〉
Lemma 0.3 (Distinguishing Distance). Let R(X) be a random variable denoting V ’s output when
sampling is done according to 〈P ∗, V ∗〉 and let R(Y) be one denoting V ’s output when sampling
is done according to 〈P, V 〉. Then |Pr(R(X) = 1) − Pr(R(Y) = 1)| < c · s where 0 < c < 1 is a
constant.

2

Let C be the event of collision. Specifically, let C be the event that there is a collision in the
sampling process from bπ to a = (a1, ..., ak), i.e. that the verifier samples the same index in b more
than once. More formally, let C be the event that ai = bj = ai′ for i 6= i′. Then using the law of
total probability,

|Pr(R(X) = 1)− Pr(R(Y) = 1)| = |Pr(R(X) = 1|¬C)(1− Pr(C))+

Pr(R(X) = 1|C)Pr(C)− Pr(R(Y) = 1)|

Replacing Pr(R(X) = 1|¬C) with Pr(R(Y) = 1) and collecting like terms, we have

= |Pr(R(X) = 1|C)Pr(C)− Pr(R(Y) = 1)Pr(C)|
= Pr(C)|Pr(R(X) = 1|C)− Pr(R(Y) = 1)|
≤ s · Pr(C)�

In particular, Pr(R(X) = 1|C) ≤ s or else there exists a π such that V π(x) > s in the original
PCP protocol, contradicting its soundness. And Pr(R(Y) = 1) ≤ s by soundness of 〈P, V 〉, giving
us the final inequality

This implies that for x 6∈ L, the probability that V ∗ accepts is ≤ s+ s · Pr(C). If Pr(C) < 1− s,
then s+ s · Pr(C) is a constant less than 1.

Using the birthday paradox approximation, we can bound the probability of collision. Specifically,
p(n, d) ≈ 1 − e−n2/2d where p(n, d) approximates the probability of throwing two balls into the
same bin when throwing n balls into d bins.

Pr(C) = 1− e−k
2/200k2

= 0.005

For x 6∈ L, then, the probability that V ∗ accepts is < s+ 0.0025.

RP Protocol

We show that a PCP for NP making a constant number of uniformly random and independent
queries collapses NP to RP by explicitly exhibiting an RP machine deciding any L ∈ NP . Let S
denote all the possible histograms of length 100k2, and let N = |Σ|.

Algorithm 2 RP Protocol M

1: Inputs: x, V ∗

2: y = 0
3: for b in S do
4: set c = 0
5: for i ∈ {1, . . . , N} do
6: run V ∗ on x, answering any queries it makes according to b
7: if V ∗’s output is 1, then do c = c+ 1
8: end for
9: if c == N , then do y = y + 1

10: end for
11: if y > 0 output 1, otherwise output 0

3

On input x, M will iterate through all |Σ|100k2 possibilities of the string b. For each b, M will run
V ∗ a polynomial N number of times on b and x. If all N = |Σ| iterations of V ∗ on b and x accept,

then M writes down a 1 for that b. Otherwise, M writes down a 0. After all |Σ|100k2 possibilities
b are tried, M accepts if it wrote down at least a single 1. Otherwise, M rejects.

Proof. We claim that M is an RP machine deciding L.

Let Xi be a random variable representing the symbol M writes down for bi.

Soundness: For x 6∈ L, then Pr(Xi) = 1 < (s + s · c)N <
201

400

N

. Union bounding over all N100k2

iterations, we have Pr[M(x) = 1] =
201

400

N

·N100k2 , which tends to zero for large N , since k is a con-

stant. In order for M to be an RP machine, we need that for all inputs x 6∈ L, Pr[M(x) = 1] ≤ 1
2 ,

that is we need (
201

400
)N ·N100k2 ≤ 1

2 for all polynomially-bounded N .

Taking log to be base 2, we see that the inequality holds when 0.993
√
N − 1

logN < 100k2. As

long as N ≥ 2, 1
logN is between 0 and 1, so

0.986N < (100k2 + 1)

In other words, N = |Σ| is bounded by a constant, so we can run the RP algorithm for the constant-
size alphabet instead for the small alphabet case, and reserve the more complicated RP algorithm
for the large N case.

Completeness: In the case of x ∈ L, we claim that Pr[M(x) = 1] = 1. To see this, let π be
the proof string that P , the PCP prover in the original protocol sends to V . Then, for any b
which contains only symbols found in π, V ∗(x) = 1–otherwise, we could contradict the perfect
completeness of the original PCP protocol.

Non-uniform but Independent Queries

A natural generalization of the original investigation is to the case of queries which are not not
necessarily made uniformly at random, but at least retain the property of k-wise independence.
The independence property allows us to re-use the useful heuristic of a proof histogram. Because
the PCP queries are independent, the probability that the verifier queries a particular proof index
is agnostic of the particular proof π. That is, the query strategy of the verifier can be summarized
by a single probability distribution p(·). Thus, instead of checking all possible histograms of proof
symbols, the subexponential time algorithm must check all possible ”weighted histograms.”

Definition 0.4 (PCP for NP with k-wise independent queries). Let 〈P, V 〉 be a PCP for NP using
a polynomial-size alphabet, making only a constant number k of independent queries and has perfect
completeness and soundness s where 0 < s < 1 is a constant. That is for any x 6∈ L, and for all
possible proof strings π, the probability that V accepts on π and x (where the probability is over V’s
coins) is less than s.

4

Let 〈P, V 〉 be a PCP for NP with k-wise independent queries. Let pV (·) denote V ’s sampling strat-
egy. Fix some arbitrary proof string π. Let hπ denote a weighted histogram of π. Then sampling k
spots from π independently according to pV (·) is the same as sampling k spots from hπ uniformly
at random and independently.

In order to turn this into an RP protocol for deciding NP , we will argue the statistical similarity
between four distributions.

• Let D0 be the distribution resulting from sampling according to pV (·) k independent times,
i.e., the distribution seen by V .

• Let D1 be the distribution resulting from sampling hπ uniformly at random and independently
k times.

• Let D2 be the distribution resulting from sampling hπ uniformly at random and independently
100k2 times to create an intermediate string b, and then sampling b uniformly at random and
independently k times.

• Let D3 be the distribution resulting from sampling π according to pV (·) 100k2 times to create
an intermediate string b, and then sampling b uniformly at random and independently k times.

Lemma 0.5 (Distinguishing Distance for Independent Queries). Let V be a PCP verifier as in
0.4. Let R(D0) be a random variable denoting V ∗’s output when its queries are answered accord-
ing to distribution D0 and let R(D3) be one when queries are answered according to D3. Then
|Pr(R(D0) = 1)− Pr(R(D3) = 1)| < c · s where 0 < c < 1 is a constant.

Proof. To see that D0 and D1 are the same distribution recall that hπ is a string encoding pV (i)
proportion of the symbol at π[i] for every index i in π. To bound the distance between D1 and D2,
we observe that we can simply apply Lemma 0.3. Distributions D2 and D3 are the same. Applying
the triangle inequality to the hybrid, we have

|Pr(R(D0) = 1)− Pr(R(D3) = 1)| ≤
2∑
i=0

|Pr(Di)− Pr(Di+1)|

≤ c · s

We now prove the Dependent Queries theorem.

Theorem 0.6 (Dependent Queries). Let PCP = 〈P, V 〉 be any PCP system for an NP-complete
language. Unless RP = NP, the queries V make cannot be independent.

Proof. We observe that D3 can be implemented by re-running V using independent randomness, as
V ’s queries are importantly independent. Then the proof for 0.6 follows the same structure as that
of 0.2. In Algorithm 1, instead of directly 100k2 locations independently and uniformly at random
from π, we run V 100k times to obtain the 100k2 independent samples. The RP protocol follows
the same format.

5

Acknowledgements

This manuscript is the result of questions the author had while first learning about probabilistically
checkable proof systems. The author thanks Justin Holmgren for answering the primary question
on uniformly random queries in this work and for coming up with the proof of the main theorem.
The author thanks Fermi Ma greatly for helpful feedback and guidance on earlier drafts, and Orr
Paradise for suggesting that author attempt the extension to independent queries, as well as Vincent
Paul Su, Alex Lombardi, and Li-Yang Tan for helpful discussions.

References

[Aro+98] S. Arora et al. “Proof verification and the hardness of approximation problems”. In:
Journal of the ACM 45.3 (1998), pp. 501–555.

[Bar06] Barak, Boaz. Note on the averaging and hybrid arguments and prediction vs. distinguish-
ing. 2006.

[Fal11] Falcon, J. and Jain, M. An Introduction to Probabilistically Checkable Proofs and the
PCP Theorem. 2011.

6

